Kalman with eigen
https://github.com/mherb/kalmanT 是一个基于eigin3的Kalman-Filter,包含了Extended Kalman Filter (EKF)、Square Root Extended Kalman Filter (SR-EKF)、Unscented Kalman Filter (UKF)、Square Root Unscented Kalman Filter (SR-UKF),4种Kalman filter。
Cholesky分解
Hermitian matrix(埃尔米特矩阵,厄米矩阵,自伴随矩阵),是共轭对称的方阵。
正定矩阵是Hermitian matrix的一种。
设A是一个n阶厄米特正定矩阵(Hermitian positive-definite matrix)。Cholesky分解的目标是:
设$A = LL^{T}$,得到:(其中$A_{21}$是一个列向量,$A_{22}$是一个n-1阶的方阵)
其中,未知量$l_{11},L_{21},L_{22}$,这3个未知量的求解公式是:
设$A_{22}’ = A_{22} - L_{21}L_{21}^{T}$,则化简为$A_{22}’ = L_{22}L_{22}^{T}$,可以继续Cholesky分解,被分解的矩阵是A的右下角的n-1阶子方阵。所以这个算法具有递归性质。
举个例子:
根据公式,有:
(注意,这里已经是n-1阶的Cholesky分解)
综上
对矩阵的Cholesky分解,就像对实数的求平方根。根据协方差矩阵的定义,Cholesky分解可以反求期望。